
www.manaraa.com

Reusing Software DevelopmentsAllen Goldberg �Kestrel Institute3260 Hillview Ave.Palo Alto, CA 94304AbstractSoftware development environments of the fu-ture will be characterized by extensive reuse ofprevious work. This paper addresses the issueof reusability in the context in which design isachieved by the transformational development offormal speci�cations into e�cient implementa-tions. It explores how an implementation of amodi�ed speci�cation can be realized by replay-ing the transformational derivation of the originaland modifying it as required by changes madeto the speci�cation. Our approach is to struc-ture derivations using the notion of tactics, andrecord derivation histories as an execution traceof the application of tactics. One key idea isthat tactics are compositional: higher level tac-tics are constructed from more rudimentary usingde�ned control primitives. This is similar to theapproach used in LCF[12] and NuPRL[1, 8].Given such a derivation history and a modi-�ed speci�cation, the correspondence problem[21, 20] addresses how during replay a correspon-dence between program parts of the original andmodi�ed program is established.Our approach uses a combination of name associ-ation, structural properties, and associating com-ponents to one another by intensional descrip-tions of objects de�ned in the transformationsthemselves.�Supported by RADC contract F30602-88-C-0127, andNSF Grant DMC-8617759. Views and conclusions con-tained within this report are the author's and should notbe interpreted as representing the o�cial opinion or policyof RADC, the U.S. Government, or any person or agencyconnected with them.

An implementation of a rudimentary replaymechanism for our interactive development sys-tem is described. For example with the systemwe can �rst derive a program from a speci�cationthat computes some basic statistics such as mean,variance, frequency data, etc. The derivation isabout 15 steps; it involves deriving an e�cientmeans of computing frequency data, combiningloops and selecting data structures. We can thenmodify the speci�cation by adding the ability tocompute the maximum or mode and replay thesteps of the previous derivation.1 IntroductionWe are addressing the issue of reusability in thecontext in which software design is achieved by atransformational development of a formal speci�-cation of the problem into an e�cient implemen-tation. This paper explores how a speci�cationderived as a modi�cation of an existing designcan be realized by replaying the transformationalderivation of the original and modifying it as re-quired by changes made to the speci�cation. Webelieve tools to support such incremental reuse ofdesigns will become an essential, integral part ofsoftware development environments of the future.Reuse of the product, or component reuse is cru-cial to bottom-up programming. Reusable com-ponents, such as user interface packages, mathe-matical subroutine libraries, graphics standards,UNIX utilities, database systems etc., providea powerful set of primitives that de�ne a vir-tual machine base from which applications can1

www.manaraa.com

be constructed. Component reuse can be en-hanced by improved programming language sup-port and improved programming environments.The need for improved programming languagesupport is exempli�ed by the lack of data ab-straction available in current languages. To usea scienti�c subroutine package that manipulatesmatrices requires agreement of the representationof matrices in both the package and the appli-cation. Providing an abstraction mechanism isinsu�cient unless it supports conversion betweendi�ering representations. An example of environ-mental support needed for component reuse is anindexing and retrieval system to locate relevantcomponents.Reuse is emerging as an important means of en-hancing software productivity. It is worthwhileto distinguish the reuse of the product of a soft-ware development e�ort, i.e. code, from reuseof the knowledge utilized in the generation of theproduct .It has been frequently observed that much of theknowledge used to create a component does notappear explicitly in the component and often notin its accompanying documentation. This knowl-edge is applied in making design decisions, suchas choice of problem decomposition, data repre-sentation, and algorithm choice. It is claimedthat loss of this information contributes to thehigh cost of maintenance. Reusing this knowl-edge is design reuse. To achieve design reuse,the issue of capturing and representing designsmust be faced.The basis for design capture we consider is toformalize software development within a trans-formational framework. In this model speci�-cations are written in formal speci�cation lan-guage. Implementations are derived from speci�-cations by application of consistency-preservingtransformations to an annotated abstract syn-tax tree representation. In our model this pro-cess is semi-automatic; transformations are ap-plied automatically and manually. At a givenpoint in the derivation many transformations arepotentially applicable. Implementors express de-sign decisions by selecting one of the many pos-sible transformations applicable at each step of

a derivation. Recording their selections creates adesign record which captures this information.The transformational approach applied to soft-ware development has been extensively studied[10, 17, 27, 28]. Powerful, generic techniques suchas data re�nement, �nite di�erencing, loop com-bining, inversion, algorithm design, etc. havebeen developed. The �eld also bene�ts fromrelated work in compiler optimization, softwarespeci�cation, theorem proving, and programminglanguage theory and practice.Program transformation systems are a promis-ing but not-well developed technology. Existingsystems have focussed on deriving implementa-tions for medium-scale combinatorial computingproblems [26, 9]. Ongoing work at Kestrel Insti-tute has led to the development of a transforma-tional system, called KIDS [30, 31] on which ourreplay work is based. Using the system we havebeen able to carry out derivations that carry non-trivial examples through many semantic levelsand apply a wide range of design and optimiza-tion techniques. For example in one derivation wederive from a high-level speci�cation of a topo-logical sort a LISP implementation which is as ef-�cient as any hand-coded version [5]. The deriva-tion is over 40 steps long where a step involvessuch diverse activity as inverting maps, com-puting containment relations among set-theoreticdata structures, simplifying expressions, combin-ing loops, and selecting data structures.The reuse problem in this context is to capturethe design decisions expressed as the manual se-lection of transformation rules, so that these de-cisions can be replayed on a speci�cation simi-lar to the original. In a conventional SDE de-velopers rely on a very tight loop in which theyexecute, modify and re-execute programs. In atransformation environment where compilation isreplaced by semi-automated transformation, thatloop is no longer tight. One use of replay is totighten the loop, by replaying the transforma-tions of the original derivation to the modi�edspeci�cation. Within the transformational modelmaintenance is done by modifying speci�cationsand rederiving an implementation. Thus replayis essential to this attractive approach to software2

www.manaraa.com

maintenance.The transformational methodology supports de-sign reuse in two interesting ways. First the cre-ation of transformations and tactics formalizesgeneral design knowledge in a highly reusableway. Second replay reuses design decisions madefor related speci�cations.The availability of a mature transformational sys-tem such as KIDS has proved invaluable for ex-perimentation with replay. Conversely everydayuse of KIDS has motivated the creation of a re-play capability.In this paper we report progress in the followingareas:� An approach to representing a design historywas developed. The approach is to struc-ture the derivation system using the notionof tactics, and record derivation histories asan execution trace of the application of tac-tics. One key idea is that tactics are compo-sitional: higher level tactics are constructedfrom more rudimentary using de�ned controlprimitives. This is similar to the approachused in LCF[12, 18] and NuPRL[1, 8].� An approach to the correspondence problemis described [21, 20]. The correspondenceproblem addresses how during replay a cor-respondence between program parts of theoriginal and modi�ed program is establishedOur approach uses a combination of nameassociation, structural properties, and asso-ciating components to one another by de-scriptions of objects de�ned in the transfor-mations themselves.� An implementation of a rudimentary deriva-tion management and replay mechanism forKIDS is described. Using the system wewere able to perform a number of interestingrederivations. We have also built up a set oftools for derivation management, includingthe ability to store and reload derivations,browse derivations, highlight changes to pro-gram text, etc.

2 Approach2.1 Recording Derivations2.1.1 Representation of the DesignThe �rst important technical problem faced inthis work is the representation of the design his-tory to be used as the basis for the replay mech-anism. The process of development has been de-scribed as starting with a speci�cation and apply-ing a linear sequence transformations to yield animplementation. However just recording the lin-ear sequence of development steps is inadequate.An analogy with mathematical proofs is reveal-ing. Formally a mathematical proof is also just alinear sequence of formulas obtained by applyinginference rules. This is an appropriate view forproviding a simple meta-theory (e.g. to prove thesoundness of the system), but for little else. Justas a mathematical proof has structure (lemmas,case analysis, formation of induction hypothesis,reformulation, etc.) and is constructed and ex-plained in terms of that structure, a similar, butformal, structure must be devised for transfor-mational developments.What kinds of structures do we observe in soft-ware developments that must be formalized? Wesurvey a few here to motivate our solution.� One common structure is the virtual ma-chine model. Here the speci�cation is ex-pressed in terms of an abstract languageand then mapped in phases to successivelylower-level virtual machine or language lev-els. Compilers are often constructed alongthis paradigm. The source language is atthis highest abstract level. In the �rst phasethis may be mapped to retargetable inter-mediate code, at a lower abstract level, andthen in a second phase to assembly lan-guage. Traditional compilers rarely involvemore than two phases. Boyle's [6] Lisp toFortran transformation system goes through7 phases, each mapping to a di�erent virtualmachine level.3

www.manaraa.com

� A second common structure is that of step-wise problem decomposition. A problem isdecomposed into components and the imple-mentation of each of the components pro-ceeds independently.� A third is the exhaustive application of a setrewriting rules. This is typical of routinesimpli�cation steps or steps that rewrite theprogram into a normal form. It is common toapply this strategy in conjunction with the�rst. Each phase mapping between languagelevels is the exhaustive application of a setof rewriting rules.� A fourth structure is that of case analysis.This is of course used to express strategieswhich are conditioned on the form of thespeci�cation or other information about thespeci�cation supplied to the system.This is a representative but not exhaustive listof high-level development steps found in systemsthat formally map speci�cations into implemen-tations. Observe that these high-level develop-ment steps are compositions of more elementalsteps and that they are expressible in terms ofcommon control structures found in ordinary pro-gramming such as conditional, sequential com-position, parallel composition and iteration. Forexample, a problem decomposition step is the se-quential composition of a step which divides theproblem in sub-problems, and a step consisting ofthe parallel composition of steps that solve thesubproblems. Parallel decomposition does notimpose a temporal order on development stepswhen no logical dependency exists.This suggests a straight-forward approach to theproblem of structuring derivations. The develop-ment system is constructed from a set of prim-itive operators, using composition mechanismssuch as the ones described above. The resultingcomposite operators are called tactics.This is the approach taken in LCF and NuPrl,systems aimed at the construction of mathemat-ical proofs, not programs. It is also the approachtaken byWile [34] The recorded derivation is sim-ply a trace of the execution of the tactics. This is

a direct implementation of the notion of processprogramming [25] in a transformational context.A di�erent approach can be based on AI-styleplanning theory [11]. Here the description of thedevelopment step is given in terms of a goal{ adeclaratively stated postcondition that describesproperties of the intended result of the step. Forexample, a step which transforms code into anormal form would be expressed by a declara-tive description of the form to be achieved. Inaddition to a goal structure, there are methods,which are operations that may be used to achievea goal. It becomes the task of the system to syn-thesize a meta-program of methods whose resultachieves the goal. The planning approach is aweak method because synthesizing plans is a dif-�cult problem, and because declarative speci�ca-tion of post-conditions is often unwieldy.2.1.2 An Elementary Tactic LanguageThis section describes an elementary tactic lan-guage su�cient to illustrate the interaction of thereplay mechanism and the tactic language. A fulltactic language is under development.The tactic language is a control language. Thecomputation responsible for transforming pro-grams lies within primitive tactics written insome other language, which in our case is Refine[32] Primitive tactics are represented by Refineprocedures which are called by the tactic lan-guage interpreter. The form of a primitive tacticis: procedure-name (parameter-list)[returns identi�er-list]The identi�er-list , and parameter-list are eachlists, separated by commas, of an identi�er fol-lowed by a colon followed by a type expres-sion. The procedure is called supplying actualparameters, which generally are nodes of the ab-stract syntax tree (AST) representing the pro-gram. The procedure transforms the program asa side-e�ect. It returns a list of values which are4

www.manaraa.com

then bound to the variables appearing in iden-ti�er list following the keyword returns. Thesevariables are called tactic variables. It also re-turns an indication of whether the tactic suc-ceeded or failed.The tactic variables appearing in the identi�erlist must be declared in a containing tactic calledan abstraction tactic. An abstraction tactic al-lows the construction of a tactic with a name,formal parameters, local variables and a body.These tactics have the form:tactic-name (parameter-list) =let identi�er-list in tacticreturns identi�er-listAn abstraction tactic is invoked the same wayas a primitive tactic. The formal parameters arebound to the actual values, the local tactic vari-ables are allocated and the tactic following thekeyword in is executed. The tactic fails if thetactic following the keyword in fails.Primitive tactics are composed using controlprimitives. The most elementary is sequen-tial composition. This is simply denoted astactic1;tactic2; . . . ;tacticn. It represents the tac-tic which executes each tactic sequentially. Thistactic fails if any of its sub-tactics fail.The parallel execution of tactics is denotedtactic1ktactic2k . . . ktacticn. It represents thetactic which executes each tactic once in any or-der or conceptually at least, in parallel. Parallelcomposition is used when there is no logical de-pendence among the tactics, and so no temporalorder on their execution should be speci�ed. Thistactic fails if any of its sub-tactics fail.The conditional tactic has the formif condition then tacticelseif condition . . . else tactic

The condition must be a function call which re-turns a boolean value. The tactic fails if the sub-tactic that executes fails.The syntax tactic1?tactic2 denotes a tactic whichexecutes tactic1; if this fails it executes tactic2.This is a useful exception handling mechanism.Finally there is a repetition tactic.while condition do tacticExample. This is a tactic that will exhaustively�nd and combine all pairs of loops that may bemerged within a program part p, which is passedas a parameter.Combine-Loops(p: program-part) =let Loop-1 : program-part,Loop-2 : program-part,Combined-Loop : program-partinwhile exists-combinable-loops(p)(Find-Combinable-Loops(p)returns Loop1, Loop-2;Merge-Loops(Loop-1, Loop-2)returns Combined-Loop;Simplify(Combined-Loop))A tactic such as Combine-Loops may be incor-porated into another tactic or may be invokeddirectly by the user.2.2 The Replay ProblemThe replay problem is: given an original programP , its derivation history D, and a modi�ed pro-gram P 0 , utilize.Parameter Correspondence. The executionof a tactic may cause a tactic variable to bebound to some code. Code bound to thesame variable corresponds.5

www.manaraa.com

Structure correspondence is a weak syntatic-based notion used in the absence of strongerheuristic and semantic information generated bythe other correspondence methods. It can bemade more powerful by the adoption of programdependence graphs [13, 14] as the underlying rep-resentation instead of annotated abstract syntaxtrees. PDG's incorporate data and control
owdependencies into the representation and factorout syntactic di�erences that do not contributeto semantic behavior. Using PDGs instead ofASTs would require a major revision to the KIDSsystem and a better treatment by PDGs of non-scalar variables.Parameter correspondence is a powerful notion,because it captures a semantic correspondence.Often when a tactic is applied it creates a codesegment. Suppose that when the tactic is re-played a new code segment is created. With re-spect to the semantics encoded in the tactic bothcode segments play the same role and a corre-spondence is established. For example, a divide-and-conquer algorithm design tactic will generateidenti�able code components such as code for thebase case; code for dividing the problem into sub-problems, etc. Parameter correspondence wouldidentify, say, code for the base case in each deriva-tion as corresponding.Our replay algorithm maintains a binary rela-tion called the correspondence relation. The �rstand second components of the relation are nodesof the AST taken from the derivation executiontrace of D and D0 respectively. Intuitively, a pairis in the correspondence relation if there is someevidence that the two pieces of abstract syntaxrepresent code playing the same role in interme-diate versions of P and P 0 .The correspondence relation is initialized as fol-lows. The language that P and P 0 are written inis a single-assignment functional language. It hasa binding construct, known as let*, and iterationconstruct for*. These constructs introduce localnames and expressions de�ning the value denotedby name. A heuristic of name equivalence is im-plemented by initializing the correspondence re-lation to include pairs of AST nodes from P andP 0 that de�ne the same variable name within cor-

responding program scopes. As replay proceedsthe correspondence relation will be updated.Replay proceeds by re-executing each step of theexecution trace D, starting with P 0 instead of P ,and using the correspondence relation to substi-tute actual parameters from P 0 and its deriva-tives for values from P . How the step is replayedis described by a case analysis based on the typeof the tactic. The tactic may be a primitive tac-tic, an abstraction tactic, an repetition tactic, aconditional tactic, etc.If the step to be replayed is the executionof a primitive tactic, pt(p1; . . . ; pm) returnsid1; . . . idn then the tactic pt is invoked. Actualparameters must be supplied for p1; . . . ; pm. If aparameter is a tactic variable, its current valueis used. If it is a node in the AST for P , call itB, then a corresponding node in P 0 is obtainedas follows: First the correspondence relation ischecked. If B is paired with a corresponding nodeB0 then use B0 as the actual parameter. Other-wise starting at B traverse up the AST to the �rstnode A for which A appears in the correspon-dence relation paired with some node A0 , record-ing the labels on the edges traversed. If there isno such A then stop at the root. Then starting atA0 or the root of P 0 , move down the AST follow-ing the same labels in reverse order to arrive ata node B0 . Use B0 as the value of the actual pa-rameter corresponding to B. An example is givenin Figure 1. If the paths do not correspond thenreplay fails on that step and manual interventionis necessary. This heuristic of using path cor-respondence implements the structure heuristic.It recognizes that designed artifacts have compo-nent structure and substructure. In other words,components are recursively divided into subcom-ponents, and this parts hierarchy can be used to�nd corresponding components.With all its parameters instantiated the primitivetactic is applied. If it fails, replay has failed onthat step and the user is informed. Otherwise thetactic may return values to tactic variables withthe returns clause. Parameter correspondence isimplemented by augmenting the correspondencerelation with pairs of AST nodes that were re-turned as the values of the same tactic variable6

www.manaraa.com

Figure 1: Establishing a Correspondencein the original and replayed derivation. Further-more, if any new variables were introduced by thetactic, the nodes representing those variables aremade to correspond.Other tactics are handled similarly with the ex-ception of conditional and repetition. Supposea conditional tactic is executed and in the orig-inal derivation the condition evaluates to trueand the then branch is executed. If the con-dition during replay evaluates to false the elsebranch is executed with the correspondence rela-tion used to instantiate parameters as describedabove. The correspondence relation will not beupdated when executing the else branch. Uponconclusion of the else branch, normal replaycontinues with the step following the conditional.A similar strategy is applied to repetitions.2.3 An Initial ImplementationIn our current implementation, we have not im-plemented a tactic language so that each tactic isprimitive. This means that parameter correspon-

dence cannot be used, since derivation structur-ing information is not present. However the im-plementation follows the described mechanism inall other respects. We have successfully used thereplay mechanism on a number of examples. Theresults are described in the next section.Experience using our system has suggested manyfeatures that would make a replay system user-friendly.Viewing. Currently the system displays a win-dow showing all the derivation steps. Theuser can mouse on any step and display theprogram as it appears prior to the execu-tion of the step. The user may initiate anew derivation path from that step and theresulting tree of derivations is displayed. Adesired feature is the ability to have more se-lected views, especially when the tactic lan-guage is implemented. For example we maywish to see an \executive" view that onlyshows the top-level development steps. Auser may wish to explode a derivation stepto see its sub-tactics. A user may wish toonly see tactics that succeeded; or tacticsrelevant to a speci�ed part of the program.Editing. Prior to replay the user may wish tomake edit changes to the derivation, antici-pating where replay may fail. For examplea sequence of transformations that appliedto some program part may be abstractedand reapplied to a newly introduced object.Or the user may wish to edit the derivationand reapply it to the same speci�cation toquickly generate a new implementation.Debugging. Replay is the reexecution of a \pro-cess program." Thus we can imagine a setof debugging tools that are entered at break-points or when the replay mechanism fails.The debugger will allow tactic variables tobe examined or changed, examine frames oftactic invocation, and perform other activi-ties usually provided by a debugger.7

www.manaraa.com

3 ResultsWe have used the replay mechanism on a sim-ple example of computing basic statistics suchas the mean, variance, and frequency. Figure 2shows the initial speci�cation. An explanationof the operators appearing in the program canbe found in [5]. Figure 3 shows the developmentjust prior to data structure selection. Each of thehigh-level operators such as reduce has been re-�ned into loops, and these loops have been fusedtogether so that a single pass is made over theinput, and so no intermediate expressions are re-quired. The e�ciency of the computation of themap freq has been speeded up asymptotically byiterator inversion. Data structure selection willchoose an array implementation for freq and theinput sequence.Next we modify the program by changing the def-inition of freq to yield histogram data, in which

ranges of data values are counted, and by theinclusion of the computation of the maximumvalue. Figure 4 shows the modi�ed program. Fig-ure 5 shows the result of replay.Even though the de�nition of freq was changedthe original development was successfully ap-plied. The other development steps, that wereindependent of the change, were also replayed.Finally Figure 6, shows additional developmentsteps needed to incorporate the computation ofthe maximum value into the main loop of theprogram.A second, more involved example is based ona scheduling problem in which precedence con-strained jobs are scheduled on a uni-processorsystem (only one job may be scheduled at a time).In [5] we outlined this complex derivation whichrequires over 40 steps. We modi�ed the speci�-cation to solve the problem of multi-processingscheduling and were able to replay successfullyall of the steps of the derivation.

8

www.manaraa.com

Figure 2: The Initial Speci�cation

9

www.manaraa.com

Figure 3: The Implementation of the Original Speci�cation

Figure 4: The Modi�ed Speci�cation9

www.manaraa.com

Figure 5: The Modi�ed Speci�cation after Replay

Figure 6: The Final Implementation of the Modi�ed Program10

www.manaraa.com

Because of the existence of a large existing baseof software there is work on recovery of designknowledge from code. In [2] he emphasizes theexistence of semantic clues in documentation andvariable names that will aid in design recovery.We have adopted in our use of name correspon-dence this idea. Examples of work on design re-covery can be found in [35, 33, 16].Our tactic language is similar to [34, 18]. A richermore theoretical approach is being pursued by[29, 15] using the Deva language.Closer to the spirit of the work reported here iswork done at Rutgers University. Their work iscouched in a transformational framework. Twodomains are addressed: circuit designs [22] andheuristic search algorithms [24, 23].4 Related WorkThe literature on software reuse is very extensive,but most of it deals with component reuse, i.e.the reuse of subroutines. A collection of papers,edited by Biggersta� and Perlis [3, 4] emphasizesgenerative systems, such as ours which o�er de-sign reuse and the promise greater productivityimprovements in the long run. Many of the ex-isting transformational systems are described inthe collection. This is an excellent survey of the�eld. See also [19] for a perspective on the reuseof design plans.There is also an extensive Arti�cial Intelligenceliterature on analogy and machine learning. Rep-resentative of work of this kind is [7].5 ConclusionsInitial experiments with the replay system hasbeen encouraging. Furthermore the tactic ap-proach appears to be a sound and useful basis formaking transformation systems productive vehi-cles for formal software development activities.While the varied use of analogy in its full gen-erality is not captured in our work the ability

to support evolutionary development and main-tenance appears feasible. Without such a mech-anism interactive formal development of prgramswould be impractical.Acknowledgements. I would like to thankGreg Fisher and Tom Pressburger for useful dis-cussions and for, along with Limei Gilham, im-plementing the replay system.References[1] Bates, J. L., and Constable, R. L.Proofs as programs. ACM Transactions onProgramming Languages and Systems 7, 1(January 1985), 113{136.[2] Biggerstaff, T. J. Design Recovery forMaintenance and Reuse. Tech. Rep. STP-378-88, MCC Corporation, November 1988.[3] Biggerstaff, T. J. Software Reusability,Vol. 1: Concepts and Models. ACM Press,New York, 1989.[4] Biggerstaff, T. J. Software Reusability,Vol. 2: Applications and Experience. ACMPress, New York, 1989.[5] Blaine, L., Goldberg, A., Press-burger, T., Qian, X., Roberts, T.,and Westfold, S. Progress on the KBSAPerformance Estimation Assistant. Tech.Rep. KES.U.88.11, Kestrel Institute, May1988.[6] Boyle, J. M., and Muralidharn, M. N.Program reusability through program trans-formation. IEEE Transactions on SoftwareEngineering SE-10, 5 (September 1984),574{588.[7] Carbonell, J. Derivational analogy: atheory of reconstructive problem solving andexpertise acquisition. In Machine Learn-ing: An Arti�cial Intelligence Approach,R. Michalski, J. Carbonell, and T. Mitchell,Eds., Morgan Kaufmann, Los Altos, CA.,1986, pp. 371{392.11

www.manaraa.com

[8] Constable, R. L. Implementing Mathe-matics with the NuPrl Proof DevelopmentSystem. Prentice-Hall, New York, 1986.[9] Darlington, J.D. et al. A functionalprogramming environment supporting exe-cution, partial execution and transforma-tion. In PARLE 89: Parallel Architectures &Languages Europe, Vol. I: Parallel Architec-tures, E. Odijk, M. Rem, and J. Syre, Eds.,Springer-Verlag, New York, 1989, pp. 286{305. Lecture Notes in Computer Science,Vol. 365.[10] Dijkstra, E. W. A Discipline of Program-ming. Prentice-Hall, Englewood Cli�s, NJ,1976.[11] Fickas, S. F. Automating the transforma-tional development of software. IEEE Trans-actions on Software Engineering SE-11, 11(November 1985), 1268{1278.[12] Gordon, M. J., Milner, A. J., andWadsworth, C. P. Edinburgh LCF: AMechanised Logic of Computation. Springer-Verlag, Berlin, 1979. Lecture Notes in Com-puter Science, Vol. 78.[13] Horwitz, S., Prins, J., and Reps, T.Integrating non-interfering versions of pro-grams. In Fifteenth ACM Symposium onPrinciples of Programming Languages (SanDiego, CA, January 13{15, 1988), ACM,pp. 133{145.[14] Horwitz, S., Prins, J., and Reps, T.On the adequacy of program dependencegraphs for representing programs. In Fif-teenth ACM Symposium on Principles ofProgramming Languages (San Diego, CA,January 13{15, 1988), ACM, pp. 146{157.[15] Hussain, F. A., de Groote, P.,Jacquard, R., J�ahnichen, S., Nguyen,T. T., Sintzoff, M., and Weber, M.Esprit Project ToolUse { Requirements andFeasibility Studies for a Development Lan-guage. Tech. Rep. GMD 214, Gesellschaft f�urMathematik und Datenverarbeitung mbH,July 1986.

[16] Letovsky, S., and Soloway, E. Delo-calized plans and program comprehension.IEEE Software 3, 3 (May 1986), 41{49.[17] Meertens, L. Program Speci�cation andTransformation (Proceedings of the IFIPTC2/WG 2.1 Working Conference). North-Holland, Amsterdam, 1987.[18] Milner, R. The use of machines to assist inrigorous proof. In Mathematical Logic andProgramming Languages, C. A. R. Hoareand J. C. Shepherdson, Eds., Prentice-Hall,Englewood Cli�s, NJ, 1985, pp. 77{87.[19] Mostow, J. Design by derivational anal-ogy: issues in the automated replay of de-sign plans. Arti�cial Intelligence 40, 1{3(September 1989), 119{184.[20] Mostow, J. Some requirements for e�ec-tive replay of derivations. In Proceedingsof the Third International Machine LearningWorkshop (Skytop, PA, June 1985), RutgersUniversity, pp. 129{132.[21] Mostow, J. Toward better models of thedesign process. AI Magazine 6, 1 (Spring1985), 44{57.[22] Mostow, J., and Barley, M. AutomatedReuse of Design Plans. Tech. Rep. ML-TR-14, Rutgers University, May 1987.[23] Mostow, J., and Fisher, G. Replay-ing transformational derivations of heuristicsearch algorithms in DIOGENES. In Pro-ceedings of the DARPA Case-Based Reason-ing Workshop (Pensicola, FL, May 1989).Available as Rutgers AI/Design ProjectWorking Paper Number 113-3.[24] Mostow, J., and Fisher, G. Replay-ing transformational derivations of heuris-tic search algorithms in DIOGENES. InProceedings of the AAAI 1989 Spring Sym-posium on AI and Software Engineering(Palo Alto, CA, March 1989). Available asRutgers AI/Design Project Working PaperNumber 113-1.[25] Osterweil, L. Software processes are soft-ware too. In 9th International Conference12

www.manaraa.com

on Software Engineering (Monterey, CA,March 30{April 2, 1987), pp. 2{13.[26] Paige, R., and Henglein, F. Mechanicaltranslation of set theoretic problem speci-�cations into e�cient RAM code { a casestudy. Journal of Symbolic Computation 4,2 (1987), 207{232.[27] Partsch, H., and Steinbr�uggen, R.Program transformation systems. ACMComputing Surveys 15, 3 (September 1983),199{236.[28] Pepper, P., Ed. Program Transformationand Programming Environments. Springer-Verlag, New York, 1983.[29] Sintzoff, M. Desiderata for a Design Cal-culus. Tech. Rep., RM 85{13, Universit�eCatholique de Louvain, June 1985.[30] Smith, D. R. KIDS { a knowledge-basedsoftware development system. In Proceed-ings of the Workshop on Automating Soft-ware Design (St. Paul, MN, August 25,1988). (also Technical Report KES.U.88.7,Kestrel Institute, October 1988).[31] Smith, D. R. KIDS { a semi-automaticprogram development system. to appear inIEEE Transactions on Software Engineeringspecial issue on Formal Methods, September1990.[32] Smith, D. R.Structure and Design of Global Search Al-gorithms. Tech. Rep. KES.U.87.12, KestrelInstitute, November 1987. to appear in ActaInformatica.[33] Soloway, E., and Johnson, W. L.PROUST: knowledge-based program under-standing. IEEE Transactions on SoftwareEngineering SE-11, 3 (March 1985), 267{275.[34] Wile, D. S. Program developments: for-mal explanations of implementations. Com-munications of the ACM 26, 11 (November1983), 902{911.

[35] Wills, L. M. Automated Program Recogni-tion. Tech. Rep. MIT-AI-904, MIT AI Lab-oratory, February 1987.

13

